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Summary

1. Understanding how to find targets with very limited information is a topic of interest in many disciplines. In

ecology, such research has often focused on the development of twomovement models: (i) the L�evy walk and (ii)

the composite correlated random walk and its associated area-restricted search behaviour. Although the pro-

cesses underlying these models differ, they can produce similar movement patterns. Due to this similarity and

because of their disparate formulation, current methods cannot reliably differentiate between these twomodels.

2. Here, we present a method that differentiates between the two models. It consists of likelihood functions,

including one for a hiddenMarkovmodel, and associated statistical measures that assess the relative support for

and absolute fit of eachmodel.

3. Using a simulation study, we show that our method can differentiate between the two search models over a

range of parameter values. Using the movement data of two polar bears (Ursus maritimus), we show that the

method can be applied to complex, real-worldmovement paths.

4. By providing the means to differentiate between the two most prominent search models in the literature, and

a framework that could be extended to include other models, we facilitate further research into the strategies ani-

mals use to find resources.

Key-words: animal movement, area-concentrated search, area-restricted search, hidden Markov

model, L�evy flight, L�evy foraging hypothesis, random search strategy

Introduction

Search strategies that allow targets to be found with very lim-

ited information are relevant to diverse fields of study (B�enic-

hou et al. 2011). In particular, they have received much

attention in the animal movement literature, where the two

most prominent random search models are the L�evy walk and

the composite correlated randomwalk (CCRW), with its asso-

ciated area-restricted search behaviour (Fauchald & Tveraa

2003; Viswanathan, Raposo & Luz 2008; Dragon et al. 2012).

The L�evy walk is a popular but controversial movementmodel

that is defined as a randomwalk with a power-law distribution

describing the step length frequency (Benhamou 2007;

Edwards et al. 2007; Humphries et al. 2012; Sims et al. 2012;

Pyke 2015). This distribution has a characteristic heavy tail

that allows for arbitrarily long step lengths. L�evy walks are

sometimes inaccurately referred to as L�evy flights in the move-

ment literature (see Pyke 2015). Area-restricted search (also

known as area-concentrated search) is the process whereby

animals restrict their movement to the vicinity of recent cap-

tures and is particularly useful in heterogeneous environments

(Kareiva & Odell 1987; Benhamou 1992). Area-restricted

search is one of two behaviours often modelled with CCRWs

or similar composite random walks ( Benhamou, 1992, 2007).

Such two-behaviour models typically consist of ‘extensive’ and

‘intensive’ phases and are often used to identify foraging events

or locate food patches from movement data (e.g. Jonsen,

Myers & James 2007; Dragon et al. 2012; Knell & Codling

2012). Each behaviour is related to a specific part of the land-

scape. The intensive search behaviour is triggered by the

encounter of a food item. This behaviour is called area-

restricted search because the animal uses low speed and large

turning angles to remain within a food patch and thus increase

the probability of detecting prey. The extensive search behav-

iour is resumed after repeated unsuccessful searches. It uses

fast and nearly straight movement to find the next food patch.

Both the L�evy walk and CCRWs with area-restricted search

have been claimed to be optimal under certain conditions

(Benhamou 1992; Viswanathan et al. 1999, but see James,

Plank & Edwards 2011) and both have empirical support (e.g.

Dragon et al. 2012;Humphries et al. 2012).

Although the processes underlying these two search models

differ widely in their biological interpretation, their movement

patterns are similar and difficult to differentiate. Many have*Correspondence author. E-mail: marie.auger-methe@ualberta.ca
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argued that the CCRW could be confounded with the L�evy

walk (Benhamou 2007; Plank & James 2008; Plank & Codling

2009; Codling & Plank 2011), and the disparate formulation of

these models hinders their direct comparison (Auger-M�eth�e

et al. 2011). In response, new methods to identify the L�evy

walk have been developed ( Gautestad, 2012, 2013; Reynolds

2012, but see Auger-M�eth�e, Plank & Codling 2014). However,

these improved methods cannot be used to quantify the evi-

dence for the CCRW. Quantifying the level of evidence for

each model is important as it both reduces the potential for

misidentification and allows for a more comprehensive analy-

sis of search strategies. Recently, methods have been proposed

that simultaneously fit the L�evy walk and models approximat-

ing the CCRW (Jansen, Mashanova & Petrovskii 2012; Plank,

Auger-M�eth�e &Codling 2013). Although thesemethods repre-

sent significant improvements over previous approaches, they

do not fully represent the CCRW as they lack turning angles

and temporal correlation in behaviours. Turning angles are an

essential part of movement and are crucial for distinguishing

between the two movement behaviours found in the CCRW

(Benhamou 1992; Pyke 2015). Temporal correlation in behav-

iours is an inherent characteristic of the CCRW because it is

required to create the tortuous movement that allows the

animal to remain in a food patch.

Here, we present a new method for differentiating between

the movement patterns of the L�evy walk and CCRW. In the

proposed method, the CCRW is represented by a hidden

Markov model (HMM) that incorporates turning angles and

behavioural persistence (similar to Langrock et al. 2012). For

comparability, the L�evy walk and two null models are

modified to incorporate turning angles. Likelihood functions

for these models are created because they are essential for a set

of statisticalmeasures that assess both the relative and absolute

support for each model. Using a simulation study, we show

that our method can be used to successfully differentiate

between the movement patterns of L�evy walks and CCRWs

and to assess the relative and absolute fit of the models. We

demonstrate the applicability of our method by applying it to

themovement paths of two polar bears (Ursus maritimus).

Methods

DEVELOPMENT OF THE PROPOSED METHOD

Our proposed method consists of likelihood functions representing

each search model and statistical measures that use these likelihoods to

assess the support for eachmodel.

Likelihood functions

Our likelihood functions use the information from both movement

measures of a step: (li,hi). The step length, li, is defined as the distance

between the starting and ending locations of the ith step. The turning

angle, hi, is defined as the angle of a step relative to the previous step

direction. Only steps with a sufficient number of locations to measure

both a step length (i.e. requires two locations) and a turning angle

(i.e. requires three locations) are included. In addition, because we

focus on the case where animals are moving and potentially search-

ing (i.e. not performing behaviours such as resting) and because L�evy

walks only model step lengths >0, we exclude steps with identical

start and end points. Excluding steps is possible because the models

either assume that each measure of movement is independent and

identically distributed or, in the case of the HMM, are built to han-

dle missing steps. In this section, we present the development of the

likelihood functions representing a CCRW, L�evy walk and two null

models. The four likelihoods differ mainly in the probability density

functions (PDFs) chosen to describe the step length and turning

angle frequencies.

A CCRW is a combination of two random walks, representing two

behavioural modes. Similar to Plank &Codling (2009), we describe the

tortuousmovement of the intensive search (hereafter denoted with sub-

script I) with a Brownian walk (BW) and the directed movement of the

extensive search (hereafter denoted with subscript E) with a correlated

random walk (CRW). The BW and CRW are two common models

that differ in their turning angle distribution.While an animal following

a BW has no preferred turning direction, one following a CRW has a

tendency to continue in the same direction as the previous step (Cod-

ling, Plank&Benhamou 2008).

For each behaviour, we define the turning angle frequency with one

of two circular PDFs. To represent the intensive search as a BW, we

use a circular uniform distribution, v0(h) (Appendix S1, Table A1, Sup-
porting Information). For the extensive search, we chose the vonMises

distribution. This distribution was used in recent studies comparing

L�evy walks and CCRWs (Plank & Codling 2009; Plank, Auger-M�eth�e

& Codling 2013). The von Mises distribution has two parameters: a,
which is the location parameter and can be interpreted as the mean

angle between steps; and j, which is the scale parameter and can be

interpreted as the size of the directional correlation. To represent the

extensive search as a CRW, we set aE = 0 and estimate jE. This von

Mises distribution is similar to a circular version of the Gaussian distri-

bution centred at 0 (Forbes et al. 2011) and is represented as v(h|jE)

(Appendix S1, Table A1).

For each behaviour, we model the step lengths with a slightly modi-

fied exponential distribution, /(l|k,a) (Appendix S1, Table A1). This

modified exponential distribution is often used as an alternative to the

L�evy walk (e.g. Codling & Plank 2011; Edwards 2011; Reynolds 2012)

and was used in previous attempts to compare multiphasic movement

to the L�evy walk (Jansen, Mashanova & Petrovskii 2012). The expo-

nential distribution defines the probability of a step length as exponen-

tially decreasing with increasing size. The modified exponential

distribution starts at theminimum step length, a, rather than starting at

0. This modification is equivalent to applying the exponential distribu-

tion to the difference between the step length and the minimum step

length, l�a. The distribution often used to model L�evy walks requires

the minimum step length, a, to be >0 (Edwards 2011; Forbes et al.

2011; Edwards et al. 2012). As such, the data sets used in L�evy walk

studies exclude step length of 0 (i.e. when the animal remains station-

ary). The modified exponential distribution can model data sets that

exclude step lengths of 0 and thus makes our CCRWdirectly compara-

ble to L�evy walkmodels.

Each exponential distribution has two parameters to estimate: the

minimum step length, a, and the rate parameter, k.While theminimum

step length, a, is assumed to be the same for both behaviours, k differs

between behaviours: kI and kE. We can interpret k as the inverse of the

mean step length (Forbes et al. 2011), or more precisely as the inverse

of the mean difference between step lengths and the minimum step

length, k ¼ n=
Pn

i¼ 1ðli � aÞ. Thus, a difference between kI and kE

captures differences in the distances moved in each behaviour. By
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combining the step length and turning angle distributions, we get the

following observation PDFs associatedwith each behaviour:

pIðli; hiÞ ¼ /ðlijkI; aÞ v0ðhiÞ; eqn 1

and

pEðli; hiÞ ¼ /ðlijkE; aÞ vðhijjEÞ: eqn 2

The observation PDFs describing the movement of each behaviour

are combined through what is referred as a mixing distribution. The

choice of mixing distribution is an important difference between our

model and the previous attempts to compare multiphasic movement to

the L�evy walk (Jansen, Mashanova & Petrovskii 2012; Plank, Auger-

M�eth�e & Codling 2013). Previous models combined the observation

probabilities through an independent mixing distribution, where the

probability of intensively searching and that of extensively searching

are independent of previous probabilities and constant through time.

Although these models provide good approximations to the movement

of an animal that has two behaviours, they do not represent the tempo-

ral correlation in behaviours that a HMM can provide. Behavioural

persistence is crucial when modelling the CCRW without including

environmental variables as the trigger for behavioural switches. In our

case, we implicitly represent the spatial correlation that a patchy land-

scape would create with first-order temporal correlation in behaviour.

Thus, unlikemodels with an independentmixing distribution, the order

of the observations is important in aHMM.

We used the methods of Zucchini & MacDonald (2009) to create a

HMM from our observation probabilities. The mixing distribution is a

first-order Markovian process, which models the transition between

the behaviour of consecutive steps through the transition probability

matrix:

C ¼ cII 1� cII

1� cEE cEE

� �
; eqn 3

where cII and cEE are the probabilities of remaining in the intensive and

extensive search behaviours, respectively, and 1�cII and 1�cEE are the

probabilities of switching from intensive to extensive and from exten-

sive to intensive, respectively. Because the duration of each movement

phase follows a geometric distribution, 1/(1�cII) and 1/(1�cEE) can be

interpreted as the mean number of steps the animal remains in the

intensive and extensive search, respectively. Thus, an animal that

remains on average more than two steps in the same search behaviour

will have cII and cEE>0�5. As the probability of being in a behaviour

depends on the previous probabilities, we need to define the initial

probability of being in each behaviour:

d ¼ ðdI 1� dIÞ; eqn 4

where dI and 1�dI are the probabilities of starting in the intensive and

extensive search behaviours, respectively. The likelihood of the CCRW

is as follows:

LccrwðHjl; hÞ ¼ dPðl1; h1Þ
Yn
i¼ 2

ðCPðli; hiÞÞ 1; eqn 5

where 1 is a column vector of ones andP(li,hi) is the observation proba-
bility matrix that incorporates the probability of being in each behav-

iour as defined by eqns 1 and 2:

Pðli; hiÞ ¼ piðli; hiÞ 0
0 peðli; hiÞ

� �
: eqn 6

The expanded formula of the likelihood can be found in Table 1. As

mentioned above, we used the vonMises and exponential distributions

in our HMMbecause they have been used in related research (Plank &

Codling 2009; Jansen, Mashanova & Petrovskii 2012; Plank, Auger-

M�eth�e & Codling 2013). However, this approach can be generalized.

The HMM framework is flexible, and other turning angle and step

length distributions can be used to create CCRWs (e.g. wrapped

Cauchy andWeibull distributions, see: Langrock et al. 2012).

Tomake the likelihood of the L�evy walk comparable to the CCRW,

we used a PDF for the turning angle in addition to the PDF that is

generally used to describe the step lengths of the L�evy walk (Table 1).

Following others (e.g. Bartumeus et al. 2005; Plank, Auger-M�eth�e &

Codling 2013; Pyke 2015), we assume that the L�evy walk’s turning

angle distribution is uniform. Thus, we used the same circular uniform

PDF, v0(h), as described above (Appendix S1, Table A1). Two step

length PDFs can be used to describe the L�evy walk. One represents the

pure L�evy walk, the other represents the truncated L�evy walk (TLW).

Unlike the pure L�evy walk, the TLWplaces an upper bound on the size

of possible step lengths, making it biologically plausible (Viswanathan,

Raposo & Luz 2008). As a result, the TLW is often used as the L�evy

walk model for animal movement (e.g. Sims et al. 2012). The step

length PDF of the TLW is the truncated Pareto, wT(l|lT,a,b) (Appendix

S1, Table A1). This distribution has three parameters to estimate: the

shape parameter, lT, which increases the probability of long step

lengths as it decreases, the minimum step length, a, and the maximum

step length, b, which represents either the greatest step length an animal

can make or the greatest distance between prey encounters. The likeli-

hood for the TLW is as follows:

LtlwðHjl; hÞ ¼
Yn
i¼ 1

wTðlijlT; a; bÞ v0ðhiÞ eqn 7

While we focused on the TLW in the main text, we present analyses of

the pure L�evywalk inAppendix S1.

To verify that the complexity associated with the CCRW and TLW

is required to explain the data, it is important to compare these models

against simpler ones. Therefore, we used likelihood functions for two

simpler models: the BW and CRW (Table 1). The BW is a null model

representing an individual moving randomly in space, while the CRW

represents movement with directional persistence. These models are

closely related to the null models used in L�evy walk studies (Bartumeus

et al. 2005; Edwards et al. 2007) and use the same circular and expo-

nential PDFs as the observation PDFs of the CCRW (eqns 1 and 2).

The truncated version of the exponential distribution is sometimes used

as a null model in L�evy walk studies (e.g. Edwards et al. 2007), and we

present analyses of the truncated versions of these two models in

Appendix S1.

Statistical measures

To assess the support for each search model, we used the likeli-

hood functions described above with a set of statistical measures.

First, we computed the maximum-likelihood estimates (MLEs) of

the model parameters and calculated their confidence intervals

through likelihood surface analyses. Secondly, we compared the

fit of the models with Akaike information criterion (AIC) and

Akaike weights. Finally, we tested the absolute fit of the models

through analyses of pseudo-residuals. We performed these analy-

ses with R 3.1.1 (R Core Team 2014). The R code and Rcpp

source code for the R package we have developed is available on

GitHub (http://github.com/MarieAugerMethe/CCRWvsLW).

We used maximum likelihood to estimate the parameters of the

models described above (Table 2). We used known analytical solutions

for the MLE of a and b (Edwards et al. 2012). For the remaining

parameters, we used numerical optimizing functions and, in the case of

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 1179–1189
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our CCRW, we used the expectation–maximization (EM) algorithm

described by Zucchini & MacDonald (2009). We used the EM

algorithm for our CCRW because it could be readily coded with Rcpp

(Eddelbuettel & Franc�ois 2011). The resulting Rcpp algorithm was

orders of magnitude faster than using R’s numerical optimizers to

directly maximize the likelihood. Given that we fit our CCRW to

77 700 simulations, computational efficiency was an important consid-

eration (see next section). A disadvantage of using the EM algorithm

over the direct numerical maximization is the need to estimate dI (Zuc-

chini &MacDonald 2009), a parameter with little biological relevance.

While both methods generally produce similar results, the EM algo-

rithm is harder to code than the numerical maximization of the likeli-

hood (MacDonald 2014). Thus, while our fast Rcpp EM algorithm

was required for our simulation study, the direct numerical maximiza-

tion of the CCRW likelihoodwould have been easier to implement and

would be an adequate solution to fit a CCRW to empirical data. Newly

developed HMMs may be more easily implemented using direct

numerical maximization of the likelihood (e.g. Langrock et al. 2012).

To estimate the confidence intervals of the parameters, we used the

quadratic approximation described by Bolker (2008). This method uses

the Hessian of the negative log likelihood at its minimum value. As the

analytical solution of a and b is to use the minimum and maximum

observed step lengths (Edwards et al. 2012) and the estimated value

from the EM algorithm for dI depends only on the observations of the

first step (Zucchini &MacDonald 2009), it is difficult to estimate confi-

dence intervals for these three parameters. We only provide point esti-

mates for them.

The main goal of our likelihood functions was to identify which

model fits the data best. To do so, we compared the relative fit of the

models using AICc and Akaike weights (Burnham & Anderson 2002).

The model with the lowest AICc is considered to be the best model. To

measure the weight of evidence the best model has over the other

models, we calculated Akaike weights, w, from the AICc values of the

models (Burnham & Anderson 2002). Akaike weight values vary

between 0 and 1, with a weight close to 1 suggesting that the data

strongly support themodel over the othermodels investigated.

As the best model according to AICc and Akaike weights can still

be a poor representation of the data, it is important to verify its abso-

lute fit (Auger-M�eth�e et al. 2011). In the context of L�evy walk analy-

ses, the suggested test of absolute fit is a G-test (Edwards et al. 2007;

Edwards 2011), a test that assumes that observations are independent

of one another. This assumption is violated in the case of the CCRW

because this model incorporates temporal autocorrelation. Hence, we

modified the test of absolute fit by applying the G-test to pseudo-

residuals rather than to observations. We used ordinary uniform

pseudo-residuals, which are residuals that account for the interdepen-

dence of observations and are uniformly distributed when the model

adequately describes the data (Zucchini & MacDonald 2009). We per-

formed a G-test that compares the observed frequency of these

pseudo-residuals to a discretized uniform distribution. To reduce the

potential bias associated with bins that have small expected values, we

used William’s correction and ensured that each bin had 10 expected

pseudo-residuals (Sokal & Rohlf 1981). We applied the G-test to the

pseudo-residuals of step length and turning angle independently and

subsequently combined their P-values using Fisher’s method (Sokal &

Rohlf 1981). One can further investigate the absolute fit of the models

by looking for the presence of autocorrelation in the pseudo-residuals.

Appendix S2 describes pseudo-residuals and the test of absolute fit in

more detail.

SIMULATION STUDY

We used simulations to assess whether our method can

differentiate between the TLWandCCRW (code also available onGit-

Table 1. Likelihood functions and number of parameters to estimates, k, of the four models. Table A1 of Appendix S1 describes the PDFs, /(),
/T(), v(), v0(), andwT()

Model Likelihood function k

CCRW dI 1� dIð Þ /ðl1jkI; aÞv0ðh1Þ 0
0 /ðl1jkE; aÞvðh1jjEÞ

� � Qn
i¼ 2

cII 1� cII

1� cEE cEE

� �
/ðlijkI; aÞv0ðhiÞ 0

0 /ðlijkE; aÞvðhijjEÞ
� �

1
1

� �
7

TLW
Qn
i¼ 1

nTðlijlT; a; bÞv0ðhiÞ 3

BW
Qn
i¼ 1

/ðlijk; aÞv0ðhiÞ 3

CRW
Qn
i¼ 1

/ðlijk; aÞvðhijjÞ 4

Table 2. Description and empirical estimates of the model parameters. The parameter estimates and associated confidence intervals (CIs) are pre-

sented for each bear

Symbol (unit) Description Bear 1 Bear 2

a (m) Minimum step length of all fourmodels 21 2

b (m) Maximum step length of the TLW 12 614 11 789

dI Probability of starting in theCCRW’s intensive search 0 0

cII Probability of remaining in the CCRW’s intensive search 0�48 (0�00–0�74) 0�83 (0�75–0�89)
cEE Probability of remaining in the CCRW’s extensive search 0�91 (0�83–0�97) 0�97 (0�95–0�98)
j Size of the directional correlation of the CRW 1�41 (1�18–1�68) 1�21 (1�10–1�34)
jE Size of the directional correlation of the CCRW’s extensive search 1�74 (1�41–2�12) 1�22 (1�09–1�36)
k (m�1) Rate parameter of the exponential distribution of the BWandCRW 0�0009 (0�0008–0�0011) 0�0010 (0�0009–0�0010)
kI (m

�1) Rate parameter of the CCRW’s intensive search 0�0031 (0�0015–0�0059) 0�0100 (0�0075–0�0131)
kE (m

�1) Rate parameter of the CCRW’s extensive search 0�0008 (0�0007–0�0010) 0�0008 (0�0008–0�0009)
lT Scale parameter of the truncated Pareto distribution of the TLW 1�000 (1�000–1�037) 1�000 (1�000–1�002)
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hub: https://github.com/MarieAugerMethe/CCRWvsLW). Because

parameter values affect the resemblance of thesemodels (Auger-M�eth�e,

Plank &Codling 2014), we simulated the CCRWand TLWon a range

of parameter values. For each set of parameters, we ran 50 simulations.

Each simulation created a movement path of 500 biologically relevant

steps (i.e. representing animal movement decisions, for which a con-

stant time interval is not assumed, see Appendix S3 for simulations

investigating alternative conditions). For each simulation, we used our

proposed method to estimate the parameter values and calculate the

Akaike weights of all models. This allowed us to verify that themethod

could accurately estimate parameters and appropriately differentiate

between models. To assess whether the true model was rejected at the

appropriate a-level, we also calculated the P-value of the absolute fit

test associated with the simulatedmodel.

To simulate the CCRW, we initialized the movement path by select-

ing the starting behaviour, either I1 orE1, using a Bernoulli distribution

with probability of being in the intensive search behaviour defined by

dI. If the behaviour was the intensive search, we randomly selected a

turning angle from a circular uniform distribution and a step length

from an exponential distribution with kI. If the behaviour was the

extensive search, we randomly selected a turning angle from a von

Mises distribution with jE and a step length from an exponential distri-

bution with kE. After selecting the turning angle and step length for the

first step, we selected the next behavioural state with a Bernoulli distri-

bution that used the transition probability appropriate for the current

behaviour (i.e. cII if in intensive search and cEE if in extensive search). As

for the first step, we then selected a step length, a turning angle and the

behavioural state for the next step from the appropriate distributions.

This process was continued until the last step of the movement path.

Our CCRWhas seven parameters (Tables 1 and 2).We fixed the values

of dI, kI, and a, to 0�5, 0�01, and 1, respectively. We varied the value of

jE to (0�5, 1, 5, 10), that of kE to (0�01, 0�005, 0�001, 0�0005, 0�0001), that
of cII to (0�6, 0�7, 0�8, 0�9) and that of cEE to (0�1, 0�2, . . ., 0�9). By choos-
ing kI ≥ kE, the step lengths from the extensive search behaviour were

either the same length or longer on average than those from the inten-

sive search. We chose the values of cII to be >0�5 because the intensive

search of the CCRW is efficient only if the animal remains multiple

steps in a food patch. In contrast, we allowed cEE to be <0�5 because an
efficient extensive search for a food patch can be produced in one step.

All 720 combinations of these parameters were simulated. For each

step of the TLW simulations, we randomly selected a turning angle

froma circular uniformdistribution, and a step length from a truncated

Pareto distribution. The TLW has three parameters (Tables 1 and 2).

We set a = 1 and varied the value of lT to (1�1, 1�2, . . ., 2�9) and b to

(100, 1000, 10 000). All 57 combinations of these parameters were

simulated.

APPLICATION TO EMPIRICAL DATA

To demonstrate its usefulness, we applied ourmethod to themovement

path of two polar bears from the Western Hudson Bay, Manitoba,

Canada (data available on the University of Alberta Education &

Research Archive: http://hdl.handle.net/10402/era.40993). These two

adult females were captured in September 2010 using the standard

immobilization techniques (Stirling, Spencer & Andriashek 1989,

approved by the University of Alberta BioSciences Animal Policy and

Welfare Committee – Protocol #6001004) and were collared with Gen

IV collars from Telonics (Telonics Inc., Mesa, AZ, USA). The collars

were programmed to collect GPS locations at varying frequencies

throughout the year. We used data fromApril 2011, the longest period

with high-frequency locations (location taken every 30 minutes) and a

period where bears search for food (Thiemann, Iverson & Stirling

2006; Pilfold et al. 2012). These two bears were on the sea ice during

this period. We applied our method to the data from each individual

separately after estimating biologically relevant steps from the raw

GPS data. Multiple techniques can be used to transform locations

collected at regular time intervals into a time-series of biologically

relevant steps (e.g. Turchin 1998; Codling & Plank 2011; Humphries,

Weimerskirch&Sims 2013). In part for its ease of use, we used the local

turn technique, which creates one step out of all consecutive sampled

steps with a turning angle smaller than a threshold angle (see Codling

& Plank 2011). We have shown elsewhere that using these types of

techniques can results in misidentifying CCRWs for the L�evy walk

(Codling & Plank 2011; Plank, Auger-M�eth�e & Codling 2013).

However, such misidentification occurs mainly when high threshold

angles are used (Codling&Plank 2011; Plank,Auger-M�eth�e &Codling

2013). We chose a threshold angle of 10∘, meaning that any sampled

step within the 20∘ forward sector is interpreted as part of a biologically

relevant step. Thus, resulting steps are created from movement in the

same general direction, and the threshold is small enough that it is unli-

kely to result in misidentification. We applied our method to empirical

data to demonstrate how to interpret results and to show the perfor-

mance of our method with real animal movement paths, which, unlike

simulated movement, are complicated by factors such as missing data.

SeeAppendix S3 for a simulation study exploring the effects of the local

turnmethod onmovement paths and a description of howmissing data

are handled.

Results

SIMULATION RESULTS

The Akaike weights could differentiate the L�evy walk from a

CCRW. When the CCRW was simulated, 81�6% of the

Akaike weight values of the CCRW exceeded 0�99 and the

Akaike weight values of TLW never exceeded 0�01 (Fig. 1a).

Although the CCRW simulations were never misidentified as

a TLW, 11�9% of the summed Akaike weight values of the

null models, wBW + wCRW, exceeded 0�5. This only occurred

when the step length distribution of the extensive search was

relatively close to that of the intensive search, kE = (0�01,
0�005). In addition, this was generally limited to cases when

the tendency to continue in the same direction was relatively

low, jE ≤ 1. When the TLW was simulated, 96�7% of the

Akaike weight values of the TLW exceeded 0�99 (Fig. 1b).

While 3�3% of the Akaike weight value of the CCRW

exceeded 0�01, only 0�1% exceeded 0�5. Note that, due to

underflow, we were unable to estimate the AICc value of the

CCRW for 0�3% of the simulations. The Akaike weights

results presented above and MLE results below ignore all

problematic simulations.

In addition to differentiating between the two models, our

method was capable of recovering the parameter values of the

CCRWandTLW.As some parameter estimates can help iden-

tify whether the data are consistent with the L�evy walk or with

a CCRW with an efficient area-restricted search behaviour, it

is important for our method to adequately estimate their val-

ues. The CCRW requires specific values for cII and jE to be an

efficient search model. The values of kI and kE can help further
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characterize the CCRWused by the animal. The TLWrequires

specific values for lT to be an efficient L�evy walk. For most

parameters of the simulated CCRW and TLW, the median of

the estimated values was close to their true value (Figs 2 and 3).

There were three exceptions. First, the estimated values of

the initial probability of being in the intensive search of the

CCRW, dI, approached either 0 or 1, not 0�5 (Fig. 2f). Sec-

ondly, some estimates of theminimum step length, a, were pos-

itively biased, and those of maximum step length, b, were

negatively biased (Figs 2g and 3b–c). Thirdly, similar to the

Akaike weights, the estimates of most parameters of the

CCRWwere less accurate when the movement patterns of the

two behaviours were similar. Specifically, the estimates were

less reliable when the simulation values of kE were relatively

close to kI. The estimated values of most parameters were

much closer to the true value when simulations with

kE = (0�01, 0�005) were excluded. While the point estimates

were generally reliable, the 95% confidence intervals, as esti-

mated with the quadratic approximation, had a tendency to be

too narrow and excluded the correct simulation value more

that 5% of the time (Appendix S3, Table C1) and often over-

lapped with the parameter space boundary (CCRW: 9�2%,

TLW: 5�6%), we thus used themore computationally intensive

profile likelihood for the empirical results.

Finally, our tests of absolute fit had rejection rates adequate

for the selected a-level of 0�05 (P-value <0�05). The proportion
of simulated CCRWs that were rejected from being CCRW

was 0�062. Similarly, the proportion of simulated TLWs that

were rejected frombeing TLWwas 0�067.
Appendix S3 shows that our method is affected by the local

turnmethod, a technique used to transform rawGPS data into

biologically relevant steps. Because the local turn method

amalgamates all consecutive sampled steps with less than a

threshold angle, and thus removes small turning angles,

parameter estimates were heavily affected. In particular, jE

estimates were negatively biased. Using the local turn method

also affected the test of absolute fit.Whenmovement paths are

transformed with such method, as in the case of our polar bear

data, the test of absolute fit should only use the pseudo-residu-

als associated with the step lengths. The results in Appendix S3

demonstrate that the local turn method strongly affects the

parameter estimates and the test of absolute fit. However,

when used with a small threshold angle, this technique did not

decrease appreciably the capacity of our method to distinguish

between the TLWand aCCRW.

EMPIRICAL RESULTS

The best model for the two empirical movement paths was our

CCRW (Table 3). For Bear 2, the Akaike weights indicated

that the CCRWwas a much better model than the other alter-

natives. However, the Akaike weight of the CCRW for Bear 1

was only 0�55, with some evidence that the CRW may have

been a more parsimonious description of the movement data

(Table 3 and Fig. 4). While the best model was the CCRW,

both movement paths were significantly different from it

(Table 3). The movement path of Bear 1 was also significantly

different from the CRW (P < 0�01). A visual representation of

the fit of themodels is presented in Fig. 4.

To identify whether the movement paths were consistent

with the best model, we investigated the parameter estimates of

the CCRW.ForBear 2, all parameters were consistent: cII>0�5
and jE>0 (Table 2). In contrast, not all parameters for Bear 1

were consistent with the CCRW. While jE>0 as expected,

cII<0�5.

Discussion

Through the analysis of TLW and CCRW simulations, we

have demonstrated that our method can differentiate between

the movement patterns of a L�evy walk and CCRW. The

Akaike weights identified the correct search model, except for

a few instances. The Akaike weights also distinguished the

TLW and CCRW from our two null models. The rare excep-

tions occurred when both the intensive and extensive search

behaviours of the CCRW simulations had similar step length

and turning angle distributions. This was expected. Other

methods developed to distinguish the intensive from the

extensive search are also less efficient when the movement of

these behaviours is similar (Knell & Codling 2012). When the
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two behaviours are similar, models describing them as one

behaviour can be sufficient. The ability of our method to dif-

ferentiate between a CCRW and null models would likely

increase with sample size.

The simulation analyses also indicated that most parameter

estimates of the TLW and CCRWwere reliable. The estimates

of the important parameters of both models (e.g. cII, kI, kE, jE,

and lT) were generally reliable and accurate. These are the only

parameters that should be used to help identify whether the

empirical data support the L�evy walk or the CCRW. No bio-

logical interpretation should be based on the probability of

starting in the intensive search behaviour, dI. As described by

Zucchini & MacDonald (2009), the estimates from the EM

algorithm for this parameter approached either 0 or 1 as d will
be one of the two unit vectors. Caution should be taken when

interpreting the minimum, a, and maximum, b, step lengths.

Even though using the minimum and maximum observed step

lengths are the MLEs and is the suggested method to estimate

these values for the TLW (Edwards et al. 2012), some of their

estimates were biased. One likely explanation is that 500 steps

was too small a sample to accurately estimate these parame-

ters. The estimates of most parameters of the CCRW suffered

when the two search behaviours were not substantially differ-

ent.

Because precise methods, such as the likelihood profile,

become highly unpractical and computationally demanding

when models have more than two or three parameters to be

estimated, Bolker (2008) recommends the use of the quadratic

approximation for estimating confidence intervals. Because

the CCRW has seven parameters to be estimated, we investi-

gated whether such approximation could be used. The simula-

tion study showed that these approximated confidence

intervals were often too narrow and excluded the simulation

value. The quadratic approximation can be inaccurate when

the parameter estimated is at the boundary of its parameter

space (Zucchini & MacDonald 2009). This approximation is

symmetric around the MLE, thus might exceed the boundary

of parameter space. This occurred for many simulations. For

the polar bear data, we estimated the confidence intervals using

the likelihood profile.

The simulation results showed that our test of absolute fit

was adequate, albeit with observed rejection rates that were

marginally greater than the expected rate of 0�05. Thus, our
test had a slightly higher level of type I error than specified by

the a-level. This problem could be associated with the known

negative bias in P-values of G-tests when sample size and

expected values are small (Sokal & Rohlf 1981). We have also

explored the use of a number of other tests, such as tests of nor-

mality on normal pseudo-residuals (see Zucchini & MacDon-

ald 2009, for description of normal pseudo-residuals). None

have outperformed the one presented here.

Some sampling procedures, in particular subsampling and

the definition of steps by significant turns, can cause Akaike

weights to select L�evy walk models when CCRWs are simu-

lated (Plank & Codling 2009; Codling & Plank 2011; Plank,

Auger-M�eth�e & Codling 2013). Although our method is likely

to be affected by such procedures, it has features that are

known to decrease misidentification errors. In particular, it

was shown that including an approximation of the CCRW

and tests for the absolute fit mitigates the risks of such errors
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Fig. 2. Violin plots of the MLE values for the

CCRW simulations. The x- and y-axes repre-

sent, respectively, the values used in the simu-
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line shows their one-to-one relationship. (a)

Probability of remaining in intensive search.
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(Plank, Auger-M�eth�e & Codling 2013). Indeed, through a

simulation study, we showed that, while parameter estimates

and test of absolute fit were affected by the local turn method

with a threshold angle of 10∘, our method’s capacity to distin-

guish between the movement patterns of CCRWs and TLWs

remained almost unaffected. We have not fully explored the

effects of data sampling and handling on the accuracy of our

method. Future work should investigate how sampling

procedures impact the capacity of our method to differentiate

between the twomodels.

Overall, our simulation study showed that we can differen-

tiate the L�evy walk from a strong alternative, such as a
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Fig. 4. Fit of the models on the movement

paths of two polar bears. (a–c) Bear 1. (d–f)
Bear 2. (a, d)Movement path, with black lines

representing the steps and the dotted line the

missing data. (b, e) Step length frequency with

the PDF of each model, on log–log axes. (c, f)
Turning angle frequency with the PDFof each

model. The P-values of the test of absolute fit

for the step length and turning angle distribu-

tions of the best model are indicated in the leg-

end.

Table 3 . Relative and absolute fit of the four models on the movement paths of two polar bears. For each bear, the DAICc and Akaike weight for

eachmodel, theP-value for the test of absolute fit of the bestmodel according toAICc, and the number of steps of themovement path are included

Individual n

DAICc Akaike weight

P-value

CCRW TLW BW CRW CCRW TLW BW CRW Bestmodel

Bear 1 235 0 302�4 170�3 0�4 0�55 <0�01 <0�01 0�45 <0�01
Bear 2 887 0 1479�7 648�6 137�2 1�00 <0�01 <0�01 <0�01 <0�01

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 1179–1189

1186 M. Auger-M�eth�e et al.



CCRW. The Akaike weights could differentiate the L�evy

walk from a CCRW that used a combination of exponential

distributions, something that is difficult to accomplish with

other methods (Benhamou 2007; Plank, Auger-M�eth�e &

Codling 2013; Auger-M�eth�e, Plank & Codling 2014). Other

alternative models, including other formulations of the

CCRW, could result in movement patterns similar those of a

L�evy walk. In many cases, it might be important to compare

the L�evy walk to a wider range of alternative models. Because

Akaike weights are relative measures of fit, it is important to

verify that the best model describes the data adequately

(Auger-M�eth�e et al. 2011). Our simulation study demon-

strates that our test of absolute fit can identify whether the

model describes the data adequately. Finally, our simulation

study shows that most parameter estimates are reliable and

thus can be used to further investigate whether the data are

consistent with the best model. Thus, the simulation study

suggests that we could infer support for a model when: (i) it is

compared to adequate alternatives, (ii) has much higher

Akaike weight values than the other models analysed, (iii)

sufficiently describes the data according to a test of absolute

fit, and (iv) has parameter estimates consistent with the

hypothesis it represents.

We demonstrated how to interpret the results of ourmethod

by applying it to empirical data. Our results suggested that

the two bears differed in their movement patterns. For Bear 2,

the Akaike weights and parameter estimates suggested that the

movement path was better represented by the CCRW. For

Bear 1, theAkaikeweights suggested that although the CCRW

was the best model, the CRW, a one-behaviour null model,

might be sufficient to explain the data. These two bears differed

in their reproductive status: Bear 1 was accompanied by a

yearling at capture, while Bear 2 was accompanied by a

cub-of-the-year. Females with cubs-of-the-year move smaller

distances, avoid adult males to reduce the risk of infanticide

and use lower quality habitat than other bears (Stirling, Andri-

ashek & Calvert 1993; Amstrup et al. 2000; Pilfold, Derocher

&Richardson 2014). Thus, it is possible that females with cubs

of different age use distinct search strategies, and this differ-

ence could have resulted in the difference observed between the

two bears.

An additional explanation for the difference between these

two bears is that the quality of their movement data differ (Fig.

4). The results for Bear 1 demonstrated that our method can

handle large amount of missing data. However, as with most

analytical methods, missing data can impact biological inter-

pretation. Specifically, reduced sample size likely hinders our

method’s ability to differentiate between models and between

the two behaviours of the CCRW. In addition, missing loca-

tions divide the path into smaller steps, which has the potential

to impact model fit. Thus, we advise caution when interpreting

results formovement paths withmanymissing locations.

The movement path of each bear was significantly different

from the best model. This indicates that while better than the

other alternatives, the best model is not sufficient to explain

polar bear movement. One could easily extend the set of

models explored by investigating multiple versions of the

HMM.While our choices were made to reduce the number of

parameters to be estimated or to ensure that certain character-

istics of the CCRW were respected, there are many ways in

which the CCRW could be modelled and certain changes

could increase its absolute fit. Our CCRW used specific distri-

butions for the frequency of step lengths and turning angles.

The choice of such distributions can affect the movement

behaviour of random walks (Codling, Bearon & Thorn 2010),

and other distributions have been used in multiphasic move-

ment models (e.g. wrapped Cauchy and Weibull distributions,

see: Morales et al. 2004; Langrock et al. 2012). In addition, by

using a simple HMM, we are assuming that the number of

steps an animal makes in each behavioural phase follows a

geometric distribution. However, the autocorrelation in

pseudo-residuals indicates that this assumption might be vio-

lated and that a first-order Markov process might be an inac-

curate representation of the switching probabilities for polar

bears (see Appendix S2). One could relax this assumption by

using a hidden semi-Markov model (Langrock et al. 2012).

While we explored only one version of a CCRW, our frame-

work allows empiricists to explore a variety of models by sim-

ply altering the characteristics of theHMM.

While exploring a larger variety of CCRWs is likely to

increase the absolute fit of ourmodel, it is unlikely that we have

sampled the movement paths at the exact scale at which the

animals are making their decisions. Sampling scale affects

behavioural inferencemade frommovement data (e.g. Codling

& Hill 2005; Andersen et al. 2008; Plank & Codling 2009).

Thus, a lack of strong evidence for the L�evy walk and CCRW

at the scale at which we have sampled our movement paths

does not preclude the possibility for such evidence at different

scales. Investigating the evidence for these movement models

across multiple scales may be useful (e.g. Fryxell et al. 2008;

Gautestad 2013; Seuront & Stanley 2014). Finally, it is possible

that we are missing important characteristics of polar bear

movement. For example, some polar bears move against sea

ice drift and ignoring drift can impact interpretation of move-

ment paths (Mauritzen et al. 2003; Gaspar et al. 2006). Thus,

an important extension for polar bears might be the inclusion

of drift in the analysis (e.g. Gaspar et al. 2006; Girard et al.

2006).

Conclusion

We have developed likelihood functions for models represent-

ing the L�evy walk and CCRW that make it possible to directly

compare the evidence for these two prominent hypotheses.

Unlike recently developed methods, our method uses informa-

tion from both step lengths and turning angles, and incorpo-

rates the temporal autocorrelation inherent in the CCRW.Our

simulation study showed that our method could differentiate

between the twomodels. By applying ourmethod to the move-

ment path of two polar bears, we showed that our method can

give easily interpretable results and handle complex movement

paths. The specific model that we used for the CCRW is just

one of the many CCRWs that could be created using a HMM.

For example, alternate step length and turning angle distribu-
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tions, such as Weibull and wrapped Cauchy distributions,

could be used to create other multi-behaviour models with dif-

ferent characteristics (e.g. Morales et al. 2004; Langrock et al.

2012). We hope that application of this method to empirical

data will further our understanding of the mechanisms used by

animals to find resources.
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